ARTIN FUNCTION AND DIOPHANTINE APPROXIMATION IN FIELDS
OF POWER SERIES

In 1968, Michael Artin proved the following theorem:

Theorem 0.1. [Ar| Let I be an ideal of A[X;, ..., X,], where A is local,
henselian and excellent. Then there exists : N — N such that:
For alli € N and for all (xq, ..., x,) € A™ such that

f(x) e mPOH forall f eI,
there exists (T, ..., Tn) € A" such that
f(z) =0 forall fel

and

T;—T; € m'* for all j.

We will call the Artin function of I the lowest function that verifies this
theorem. The Artin function of I is an invariant of the A-morphism A — AX]

T
There are three basic examples:

i) If there does not exist x = (21, ..., x,) € A™ such that f(z) = 0 for all
f € I, then the Artin function of I constant.
i) If A — @ is smooth, then the Artin function of I is equal to the
identity.
iii) If I does not verify i) and ii), then the Artin function of I is strictly
bigger, as a numerical function, than the identity.

So this function is a “measure” of the smoothness of A — @.

M. Greenberg |Gr| proved in 1966, in case A is local, henselian, excellent and,
moreover, is a discrete valuation ring (at least in characteristic zero), that the
Artin function of an ideal [ is always bounded by an affine function. M. Spi-
vakovsky [Spi| conjectured at the end of the 80’s that this result was true in
general. Few cases of this conjecture have been proved by S. Izumi [Iz|, and D.
Delfino and I. Swanson [DS].

In this talk we will present a new approach to this problem:
Let Oy := k][[T, ..., Ty]] where k is a field, m its maximal ideal and ord the

m-adic order on Oy. We will denote Vy := {% / x,y € Oy, ord(x) > ord(y)}
the discrete valaution ring which dominates Oy for ord, and we will denote

Vy ==k (:,T—Ilv, oy Té,‘l;) [[Tn]] its completion for the Krull topology. Let Ky
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and KN be the fract1on fields of Opn and VN respectively. The valuation ord ex-
tends to Ky and Ky . This valuation defines a norm, denoted by | |: Vz € Ky,
|z := e~°"*) We can prove the following theorem of diophantine approxima-
tion:

Theorem 0.2. [Ro3| Let 2z € Ky\Ky algebraic over Ky. Then there exist K
and a such that

V.ZU, yEONa

e
Y

We will see that this theorem is equivalent to the next one :

Theorem 0.3. [Ro3| Let P(X,Y) an homogeneous polynomial of Onx[X, Y]
such that (0, 0) is the only one zero of P in Oy. Then the Artin function of
P is bounded by an affine function.

We will see that the constant a of theorem 0.2 cannot be choosen equal
to the degree of the extension Ky — Ky|z], as for the classical theorem
of diophantine approximation of Liouville. We will deduce of this a counter-
example to the conjecture of M. Spivakovsky:

Theorem 0.4. |Rol| The Artin function of X? — ZY? € Oy[X, Y, Z] is
bounded from below by a polynomial equation of degree two.
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